SPATIAL FILTERING
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FIGURE 3.32 The
mechanics of
spatial filtering.
The magnified
drawing shows a
3 = 3mask and
the image section
directly under it;
the image section
is shown
displaced out
from under the
mask for ease of
readability.



Spatial Filtering

e Also called as masks processing

Two types: Linear and nonlinear filters

Linear Filters: LPF, HPF and BPF

« Low-pass filters eliminate or attenuate high frequency
components in the frequency domain (sharp image
details), and result in image blurring.

e High-pass filters attenuate or eliminate low-frequency
components (resulting in sharpening edges and other
sharp details).

e Band-pass filters remove selected frequency regions
between low and high frequencies (for image restoration,
not enhancement).



Spatial Filtering

In general, Linear filtering of an image f of size M X N
with a filter mask of size m X n is given by the
expression:

g(x,y) = Z ZW(S ) f(x+s,y+1)

S=—a =

a=(m-1)/2 and b=(n-1)/2,
m X n (odd numbers)

e For x=0,1,...,M-1 and y=0,1,...,N-1

e Also called convolution (primarily in the frequency
domain)



Spatial Filtering

The basic approach is to sum products between the
mask coefficients and intensives of the pixels under
the mask at a specific location in the image

The general 3 X 3 mask is shown in fig

! Wt iy
The response of a linear mask is

T ' iy,
R= WiZ4 + WoZ, + ..... + WoZg

(T I Wy
Where z, to zy --> gray levels of pixels




Spatial Filtering

Non Linear Filters:

These filters operate on neighborhoods.

Operation is based directly on the values of the pixels
in the neighborhood under consideration

Noise reduction can be achieved effectively with a
nonlinear filters.



SMOOTHING FILTERING



Smoothing Filters

Used for blurring and for noise reduction.

Blurring is used in preprocessing steps, such as
removal of small details from an image prior to
object extraction.

Noise reduction can be accomplished by blurring with
a linear filter and also by nonlinear filtering

Linear Filter (LPF):

The shape of the impulse response needed to
implement a LPF indicates that filter has to have all
+ve coefficients.



Smoothing Filters

» Linear Filtering:
Linear Filtering is also referred as average filters.

Replace every pixels by the average of the gray levels
in the filter mask

Reduces the sharp transitions in an image

Blur the edges of the image



Smoothing Filters

For a 3 X 3 spatial filter, the simplest arrangement
would be a mask in which all coefficients has a value
of 1.
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HGURE 3.35 (a) Original image, of size 300 x 300 pixels. (b)-{f) Results of smoothing
with square averaging filter masks of sizes n = 3,3,9,15.and 35, respectively. The black
squares at the top are of sizes 3,5,9,15,23, 35,45, and 53 pixels, respectively, their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 3 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels. and their borders are 13 pixels apart; their gray levels range from (1 to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 30 » 120 pixels



Image Enhancement in the
Spatial Domain
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FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)



Smoothing Filters
» Order Statistics Filters:

The difficulties of the Linear smoothening method is it
blurs edges and other sharp details.

If the objective is noise reduction rather than blurring an
alternative approach is to use median filter.

The gray levels of each pixel is replaced by median value
of gray levels in a neighborhood of that pixel, instead

of by averaging

This is more effective when noise pattern consists of
strong isolated spikes



Image Enhancement in the Spatial Domain
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FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a

3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)



SHARPENING FILTERS



Sharpening Filters

e The Principal objective of sharpening filter is
To highlight fine detail in an image or to
enhance details that is blurred.

- smoothing ~ integration
- sharpening ~ differentiation

o Categories of sharpening filters:

- Derivative operators
- Basic highpass spatial filtering
- High-boost filtering



Dernivative Filters

Averaging is analogous to integration and causes
blurring

Differentiation is expected to have opposite results
and sharpen an image.

The most common method of differentiation is the
GRADIENT.

First derivative g _ f(x+1)— f(x)

P

of
&’

Jx+D+ f(x=1)=2f(x)

Second derivative



Dernivative Filters

e For a function f(x,y), the gradient of f at

co-ordinates (X,y) is defined as the vector
o

ox

9

| Oy

e Consider the image as in the form of
matrix, where the z’s denote the

values of gray levels

Vf =




Dernivative Filters

e The image differentiation can be obtained by the
magnitude of the vector Vf

o Vf =|Zs-Zg| + |Z5- Zg| wWhere zs- zgis in x direction
Zs5 - Zgis in y direction

Another approach for approximation is use of CROSS
differentiation

o Vf =|Z5- 29| + |24~ Zg|
These two eq. can be implemented by using masks 2 x 2

110 0 | 1 These two masks are called the
0 | -1 10 ROBERT cross-gradient operators
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FIGURE 3.38
(a) A simple
image. (b) 1-D
horizontal gray-
level profile along
the center of the
image and
including the
isolated noise
point.
(¢) Simplified
profile (the points
are joined by
dashed lines to
simplify
interpretation).
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Digital Function Derivatives

e First derivative:
- 0 in constant gray segments
- Non-zero at the onset of steps or ramps
- Non-zero along ramps

e Second derivative:
- 0 in constant gray segments
- Non-zero at the onset and end of steps or ramps
- 0 along ramps of constant slope.



Observations

1st order derivatives produce thicker edges in an
image

2nd order derivatives have stronger response to fine
detail

1st order derivatives have stronger response to a
gray lever step

2nd order derivatives produce a double response at
step changes in gray level

2nd order derivatives have stronger response to a
line than to a step and to a point than to a line



2-D, 2nd Order Derivatives
for Image Enhancement

o |sotropic filters: rotation invariant
e Laplacian (linear operator):

Vif = ﬁz{ + ﬁz{
. Y S
e Discrete version:

jjfz =f(x+Ly)+ f(x=1Ly)=-2f(x,y)
X

j J o= fOoy D f(ry —D—2f(x,)
Y




Laplacian

« Digital implementation:

VI =[fe+Ly)+ f(x=Ly)+ fCuy+ D)+ fxy —D]-4f(x.)

e Two definitions of Laplacian: one is the negative of
the other

e Accordingly, to recover backgrougd features:
S (xy)=V=f(xy)( 1)

g(x,y) — {f<x,y)+v2f<x,y><11>

|: if the center of the mask is negative
ll: if the center of the mask is positive



Simplification
e Filter and recover original part in one step:

L)) =S (c+Ly)+fx—Ly)+1Coy+D+10oy—1) H41(xy)
g, y)=5f(,y)-[f(x+Ly)+ f(x-Ly)+f(x,y+D)+f(x,y—D]

e Laplacian increases the contrast of the image
at the locations of gray level discontinuities.
o Laplacian restores overall gray levels

« Small details were enhanced and back ground
tonanality perfectively preserved.



Image Enhancement in the
Spatial Domain
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FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian,
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FIGURE 3.40

(a) Image of the
North Pole of the
MOOT.

(b) Laplacian-
filtered image.
(c¢) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)
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Image Enhancement in the
Spatial Domain

FIGURE 3.41 (a) Composite Laplacian mask. (b) A second composite mask. (¢) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b).
respectively. Note how much sharper {e) is than (d). (Original image courtesy of Mr. Michael
Shaffer, Department of Geological Sciences. University of Oregon, Eugene.)



Unsharp Masking

e Unsharp masking: fS(x,y) = f(x,») _?(X»Y)
e Highpass filtered image =
Original - lowpass filtered image.

e If Ais an amplification factor then:

- High-boost = A - original - lowpass (blurred)
= (A-1) - original + original - lowpass
= (A-1) - original + highpass



High-boost Filtering

e A=1 : standard highpass result

e A>1: the high-boost image looks more like
the original with a degree of edge
enhancement, depending on the value of A.

w=9A-1, A>1



Image Enhancement in the
Spatial Domain
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FIGURE 3.43

(a) Same as

Fig. 3.41(c), but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A=0.

(c¢) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d)Same
as (c), but using
A=117.




1st Derivatives

e The most common method of differentiation
in Image Processing is the gradient:

of

G
VF{G} 5| at (xy)
| Oy_

e The magnitude of this vector is:

)]

Ox

Vf = mag(V) =[G’ + GT ={(8f]



The Gradient

Non-isotropic
Its magnitude (often call the gradient) is rotation
invariant

Computations:
Vf =[G |+ \Gy\
Roberts uses:
Gx — (29 o ZS)
Gy — (ZS o Z6)

Approximation (Roberts Cross-Gradient Operators):

Vf = ‘29 —25‘4— ‘Zg _Za‘



FIGURE 3.44

A3 X 3 region of
an image (the z's
are grav-level
values) and masks
used to compute
the gradient at
point labeled zs.
All masks
coefficients sum
to zero, as
expected of a
derivative
operator.
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Derivative Filters

At z;, the magnitude can be approximated as:

Vf =[(zs _28)2 + (2, _26)2]1/2

Vf &z —zg | +] 25 — z4 |



Derivative Filters

e Another approach is:
Vf =[(z5— Z9)2 +(z4 — 28)2]1/2

Vf ~z5 =24 |+ zg — z4 |
e One last approach is (Sobel Operators):

Vf = ‘(27 +2z+2y)—(z,+ 2z, + 23)‘ + ‘(z3 +2z,+2zy)—(z,+2z, + 27)‘



Image Enhancement in the
Spatial Domain
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FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).

(b) Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation.)
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FIGURE 3.46

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (¢) Sharpened
image obtained
by adding (a) and
(b). (d) Sobel of
(a).
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FIGURE 3.46
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and ().

(¢) Sharpened
image obtained
by the sum of (a)
and (). (h) Final
result obtained by
applying a
power-law
transformation to
(g). Compare (g)
and (h) with (a).
(Original image
courtesy of G.E.
Medical Systems.)



